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2/20QUANTUM SIMULATION

Quantum simulators:  study models of many-body quantum systems by engineering a physical 
system that is governed by the same laws, and that can be manipulated in the lab

Resource scaling → Time / memory ∼ 𝑶(𝒆𝒙𝒑(𝑵)) (Classical) vs  𝑶(𝒑𝒐𝒍𝒚(𝑵)) (Quantum)

Dynamical properties

Transport, thermalization / 
equilibration, dynamical QPTs, …

R. Feynamn, Int. J. Theor. Phys. 1982

Equilibrium properties

Thermal behavior, quantum phase 
transitions (QPTs), …

J. Simon et al, Nature 2011 J. Zhang et al, Nature 2017

Analog simulators

Gate-based simulation (“digital”)

M. Heyl et al, Sci. Adv. 2019

S. Trotzky et al, Nat. Phys. 2012



3/20NISQ ERA QUANTUM TECHNOLOGIES

Decoherence

Washes out quantum properties (coherence, entanglement), lost of quantum advantage

Sources: noise, inhomogeneity or unwanted coupling to other systems (environment)

Quantum error correction (QEC): as long as the noise is small enough, one can use some 
extra quantum resources to preserve quantum information

QEC allows for fault tolerant quantum 
computing (in particular, universal 

quantum simulation)

Overheads are polynomial but still seem (?) 
way into the future (∼ 105 − 106 physical 

qubits with 10−3 − 10−4 error rates)

J. Preskill, Quantum 2018

Current era of ‘noisy 
intermediate-scale 

quantum’ (NISQ) devices

10-100s of qubits: large Hilbert space but too small to do fault-tolerant QC 

Errors – restricted depth / evolution time.  How do errors accumulate in 
‘analog’ systems? Analog errors in quantum annealing: Lidar, Albash, Hen, others

npj Quantum Info. 2019, Quantum Sci. Tech. 2019

Contenders
- Hybrid quantum – classical algorithms (variational 

algorithms, VQE, QAOA)
- Adiabatic quantum computing (or variations)
- Quantum simulation!

S. Endo et al, Hybrid quantum-classical 
algorithms and quantum error 
mitigation, arxiv 2011.01382



4/20QUANTUM SIMULATION IN THE NISQ ERA

How do errors affect different 
quantum simulation outputs?

Which observables are robust and 
which are fragile?

Absence of error correction means that some things 
will be necessarily off in the simulated state

“Can one trust quantum simulators?” Hauke et al, Rep. Prog. Phys. (2012)

Ideal 
output

Real 
output

𝑶 𝒊𝒅𝒆𝒂𝒍

𝑶 𝑸𝑺

Does the system complexity 
influence the reliability the 

simulation?   



5/20OUTLINE

1. Quantum simulation based on optimal 
control of atomic spins – How does the experimental 

platform works, and how it informed us what to study 
from theory side

3. Errors and dynamical complexity – An 

example of how the complexity of the simulated 
system might ‘conspire’ against robustness

2. Theory of robust and fragile observables – A 

theory to predict a priori which outputs of a simulator might 
be more robust than others in a generic scenario

Real
simulator

Errors



6/20SMALL-SCALE QUANTUM SIMULATOR

Quantum hardware: individual laser-cooled Cs atoms in 6S1/2

electronic ground state (𝑑 = 16) 
Experiment: 

P. Jessen group

𝐻 = 𝐴 Ԧ𝐼. Ԧ𝑆 + 2𝜇𝐵 𝐵(𝑡). Ԧ𝑆

System is ‘fully controllable’ ↔ for any 𝑊 ∈ 𝑆𝑈(16), there 

exists a time 𝑇 and a set of driving fields 𝐵(𝑡) such that 

𝐵0 Ƹ𝑧 + 𝐵𝑟𝑓 𝑡 + 𝐵𝜇𝑊(𝑡)

𝐵𝑟𝑓
𝑥,𝑦
(𝑡) = Ω𝑥,𝑦 cos(𝜔𝑟𝑓𝑡 + 𝜙𝑥,𝑦(𝑡)) 𝐵𝜇𝑊(𝑡) = Ω𝜇W cos(𝜔𝜇𝑊𝑡 + 𝜙𝜇𝑊(𝑡))

Arbitrary state preparation and measurement

1. Optical pumping to 𝜒0 = |𝐹 = 3,𝑚 = 3⟩

2. Apply fields (found numerically / optimal control) to implement transformation 𝑊

3. Measure in |𝐹,𝑚⟩ basis via Stern Gerlach

B. E. Anderson et al, PRL 2015
H. Sosa-Martínez et al, PRL 2017

S. T. Merkel et al, PRA 2008
A. Smith et al, PRL 2013



7/20QUANTUM SIMULATION VIA OPTIMAL CONTROL

• Up to 𝑁 = 4 qubits (𝑑 = 2𝑁)
• Up to 𝑁 = 15 qubits in a symmetric 

subspace (𝑑 = 𝑁 + 1)
• (…)

Simulated system → anything that 
‘lives’ in an equivalent Hilbert space: 
𝑑 = dim ℋ ≤ 16

physical basis simulation basis
Initial state 
preparation

𝑘 time 
steps

Time 
evolution

Measurement

Simulation Hamiltonian 𝑯𝒔𝒊𝒎

• 𝐻𝑠𝑖𝑚 = ∑ 𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧 + ∑ℎ𝑖𝜎𝑖
𝑥

• 𝐻𝑠𝑖𝑚 = Γ 𝑆𝑧
𝑝
+ 𝐵 𝑆𝑥

• (…)

𝑊 ≡ 𝑒−𝑖𝐻𝑠𝑖𝑚𝛿𝑡Target unitary:

Control fields: 𝐵𝑥 𝑡 , 𝐵𝑦 𝑡 , 𝐵𝜇𝑊 𝑡

Repeat control sequence 𝑘 times

Simulation output  

• Map {|𝐹,𝑚⟩} to measurement basis {|𝜙𝛼⟩} via 𝑈𝑀 = ∑ 𝐹,𝑚 𝛼 𝜙𝛼
• Stern-Gerlach measurement gives populations  𝑝𝛼 = 𝑇𝑟(𝜌 |𝜙𝛼⟩⟨𝜙𝛼|)
• Outputs (expectation values, etc) are constructed from the populations



8/20QUANTUM SIMULATION PERFORMANCE

Universal simulator, programmable through optimal control

Modest (but non trivial) Hilbert space dimension, not scalable

Improved optimal control techniques leads to fidelity per time step 
> 99% and allows ∼ 100 time steps (large depth)

A small, highly accurate quantum simulator N. Lysne, K. Kuper, PMP, I. Deutsch, P. Jessen, PRL 124 230501 (2020) 

Purpose: test new models, and explore 
how errors affect the output of quantum 
simulations in a regime of high accuracy

Error in the full 
state is ‘high’

B/Λ = 1.5
B/Λ = 0.4

Fidelity

Afer 40 steps, 
fidelity ~ 60% 

ideal
simulated (exp)

Construct a framework to 
assess which outputs 

(expectation values) are 
robust and which are fragile

Error in some expectation 
values is ‘small’

Expectation 
values

ideal

simulated (exp) 

( 𝑁 = 15, 𝜓0 = ↓𝑥
⊗𝑁 )Example:



9/20ERROR IN THE OUTPUT OF AQS

Ideal 
simulator

(or, a series of                    )

Output

Real
simulator

Imperfections / 
perturbations

close to |𝜓⟩ in 
some metric

Simulator error

We want to characterize the error as a 
function of the output observable 𝐴



10/20AVERAGE SIMULATOR ERROR

Simulator error

𝑑 = Hilbert space dimension

Dependence 
with 𝐴, on 
average?

Average over Haar 
random states

Average 
relative 

error 

To compare 
between 

different 𝐴’s

Shift spectrum of 𝐴 such that minimum eigenvalue is 0 * (leaves 𝛿(𝐴) invariant)
* (except 
if 𝐴 = 𝐼)

Define the operator

“observable purity”
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Purity of A

insensitive sensitive

∼ high rank ∼ low rank

‘PURITY’ OF AN OBSERVABLE

when 𝐴 = 𝕀 (trivial)

However,

(!)

Average 
relative error

when 
𝐴 = |𝜙⟩〈𝜙| is a 

projector

𝕀 𝑆𝑥 𝑆𝑥
2 𝑆𝑥

4 |𝜙⟩⟨𝜙|

Higher order moments of the distribution 
become more sensitive



12/20DYNAMICS OF ERRORS

Real simulatorInitial 
state

Perturbation

Simulator error:

Time-averaged 
cumulative error

Weak random perturbation

• ⟨𝑢𝑛 𝑉 𝑢𝑛⟩ random, uncorrelated, 

where 𝐻 = ∑𝑛𝐸𝑛|𝑢𝑛⟩⟨𝑢_𝑛|

• Leading order perturbation theory

Full theory in arxiv: 2007.01901

Main 
result

typically

(Average, relative) asymptotic error given by observable purity!



13/20EXPLORING ROLE OF OBSERVABLE PURITY

Track simulation errors for observables of different ‘purity’:   𝑆𝑥 , 𝑆𝑥
2𝑘 , 𝑚𝑥 ⟨𝑚𝑥|

Average over 10 random states

Higher purity → higher errors!

Compute cumulative / RMS error

In
cr

e
as

in
g 

p
u

ri
ty

• Dashed lines are analytical predictions

• At long times, experiment and theory agree well. At short times, 
SPAM errors dominate. 

• No info about physical errors in the device – generic model!

One fitting parameter →
perturbation strength λ



14/20EXPERIMENTAL RESULTS

Errors obtained from real-world device are seen 
to be a monotic function of observable purity

Higher purity → higher errors!

We consider operators of the form 𝐴 = 𝑆𝑥
2𝑘, 

purity increases with k

We measure ⟨𝑆𝑥
2𝑘⟩ as a function of time for random initial 

states, and obtain the long time relative error 



Expectation values of different observables have different 
degrees of sensitivity to imperfections in the state 

High purity observables are more sensitive than 
low purity ones (on average)

Predicted behavior is generic and is found in real world 
devices – without assuming any model for imperfections

Summary of this work

Open questions and future work

Beyond perturbative regime→ effect of local perturbations and relation sensitivity vs entanglement

Sensitivity of correlation functions: 𝐶 𝐴, 𝐵 ⇒ 𝐴𝐵 − ⟨𝐴⟩⟨𝐵⟩→ robustness of mean field vs correlation

Random matrix models for perturbations: 
Nation and Porras NJP 20 103003 2018 / Dabelow and Reimann PRL 124 120602 (2020)  



16/20OUTLINE

1. Quantum simulation based on optimal 
control of atomic spins – How does the experimental 

platform works, and how it informed us what to study 
from theory side

3. Errors and dynamical complexity – An 

example of how the complexity of the simulated 
system might ‘conspire’ against robustness

2. Theory of robust and fragile observables – A 

theory to predict a priori which outputs of a simulator might 
be more robust than others in a generic scenario

Real
simulator

Errors



17/20QUANTUM ERROR MITIGATION

Quantum error correction – quantum resources to correct errors and recover exact state

Quantum error mitigation – classical resources (e.g. post-processing) to reduce errors in the output of a simulation

• Quasi-probability methods (Temme PRL 2017, Endo PRX 2018)
• Learning-based methods (Strikis 2020, Cznarnik 2020) – e.g. train a neural network to correct output using using classically simulable

(Clifford) circuits

• Zero-noise extrapolation (Temme PRL 2017, Li PRX 2017)

error 
rate

output function
Ideal output = 𝒇𝑨(𝟎)

output 
𝑓𝐴(𝜆)

error 
rate 𝜆

𝜆0 𝜆1 𝜆2 … 𝜆3

We can’t decrease 𝝀, but in some cases we can increase it 
artificially (identity insertion, Hamiltonian rescaling, …)

Run simulations for different noise levels {𝝀𝒊 ≥ 𝜆0} and obtain 
different samples of the output function {𝑓 𝜆𝑖 }

Extrapolate to 𝝀 = 𝟎 to 
estimate 𝑓𝐴 0 = 𝐴 0



18/20COMPLEXITY AND ERROR MITIGATION

Zero-noise extrapolation is expected to work well for completely Markovian 
errors, and it has been implemented successfully in small systems

In a generic setting, one expects this to work as long as errors are small enough such that some perturbative 
expansion is valid – is there a relation between this and the complexity of the system?   

Breakdown of perturbative expansions are a signature of quantum chaotic systems (i.e., 
valid up to a perturbation strength that scales inversely with Hilbert space dimension)

Example

Quantum Kicked Top  

regular mixed chaotic

𝑘 = 0.5

𝑘 = 2.5

𝑘 = 4.5
As 𝑘 increases, 𝑓𝐴 𝜆 curves 

become more convoluted – one 
needs to go closer to the ideal 

case (𝜆 = 0) to infer the correct 
result

ideal

perturbed



19/20COMPLEXITY AND ERROR MITIGATION

ideal What is the minimum value of 𝝀 required to infer the ideal value correctly? 
(up to some tolerance)

𝜆min?

𝜆min?𝜆min

chaotic

regularZNE assumes that information about the 
noiseless system can be decoded from the 
noisy system

Chaotic systems might be an example on 
which this cannot be done (at least efficiently
– for instance if 𝜆min decreases with system 
size)

Here, the method works well only in the 
regular regime Still lots to explore…

• Different types of errors (coherent / incoherent)

• Connection to perturbation theory breaking down

• Application to many body systems



20/20SUMMARY

We developed and implemented a small, highly accurate quantum simulator based on optimal control of 
the internal degrees of freedom of cesium atoms. 

We are now exploring the interplay between the complexity of the simulated system and the impact of 
errors in the simulation. In particular, we have been thinking about the role of chaos.

𝑘 = 4.5

Quantum error mitigation

We used this device to explore the effect of errors and imperfections on the output
of quantum simulators. We developed a theory to predict a priori which observables 
might be more robust to errors and which more fragile. We then went back and 
tested our predictions in the experiment.

Real simulator

Algorithmic errors, Trotterization and kicked systems

𝑒𝑖 𝛼 𝑆𝑦+𝛽 𝑆𝑧
2 𝑡 ≃ 𝑒𝑖𝛼 𝐻1𝜏𝑒𝑖𝛽 𝐻2𝜏

𝑛 with 𝜏 =
𝑡

𝑛

LMG (integrable) Kicked top (chaotic for large 𝜏)

Heyl, Hauke, Zoller, Sci. Adv. 2019
Sieberer et al, npj Q. Info. 2019

Quantum simulation of phase 
transitions 

K. Chinni, PMP, I. 
Deutsch 2021



Quantum simulation based on atomic spins: N. Lysne, K. Kuper, PMP, I. Deutsch, P. Jessen, Phys. Rev. Lett. 124 230501 (2020)

Theory and experiment on robust and fragile observables: PMP, N. Lysne, K. Kuper, I. Deutsch, P. Jessen, PRX Quantum 1, 020308 (2020)

Chaos quantum simulation of phase transitions: K. Chinni, PMP, I. Deutsch, arxiv: 2103.02714 (2021)

Chaos and Trotterization in collective spin models: M. H. Muñoz-Arias, PMP, I. Deutsch, arxiv: 2103.00748 (2021) – to appear in Phys. Rev. E
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Kevin Kuper

Karthik Chinni

Some references:
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paramagneticferromagnetic

EXPERIMENTAL RESULTS

Quantum simulation of Lipkin-
Meshkov-Glick (LMG) Hamiltonian

Infidelity:

Experiment Theory

Expectation 
value

Simulation 
error

Fitting parameter λ from

• Good agreement with one free 
parameter

• No info about physical errors 
used



23/20QUANTUM SIMULATION VIA OPTIMAL CONTROL

Full controllability

Target

In particular, we can set 

Numerical search for control waveforms (GRAPE)→maximize 

Arbitrarly-chosen 16D random unitaries achieved in with (exp)

Simulation Hamiltonian

• Not related to the physical (atomic) 
Hamiltonian

• Any model that ‘fits’ in a Hilbert space 
with dim = 16

Simulation → concatenate time steps



24/20QUANTUM SIMULATION VIA OPTIMAL CONTROL

For the control optimization, this means that we 
wish to maximize the overlap between U(T) and

where 𝑉 ∈ 𝑆𝑈(𝑑) sets the mapping

We maximize the fidelity over

Control fields  Basis of  

additional 𝒅𝟐 − 𝟏
optimization parameters

Mapping   
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